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General measures for signal-noise separation in nonlinear dynamical systems
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We propose theb divergences from statistics and information thedfly) as a set of separation indices
between signal and noise in stochastic nonlinear dynamical sys@®NI3S. The ¢ divergences provide a
more informative alternative to the signal-to-noise rd8dR) and have the advantage of being applicable to
virtually any kind of stochastic system. Moreovef,divergences are intimately connected to various funda-
mental limits in IT. Using the properties @f divergences, we show that the classical stochastic resof@Rge
curve can be interpreted as the performance of a nonoptimal, or mismatched, detector applied to the output of
a SNDS. Indeed, for a prototype double-well system with forcing in the form of white Gaussian noise plus a
possible embedded signal, the whole information loss can be attributed to this mismatch; an optimal detection
procedurgfor the signal gives the same performance when based on the output as when based on the input of
the system. More generally, it follows that, when characterizing signal-noise sepa@tisgstem perfor-
mance of SNDS in terms of criteria that do not correspond to IT limits, the choice of criterion can be crucial.
The indicated figure of merit will then not be universal and will be relevant only to some family of applica-
tions, such as the classidalarrow-band SNRRSR criterion, which is relevant for narrow-band post processing.
We illustrate the theory using simple SNDS excited by both wide- and narrow-band signals; however, we stress
that the results are applicable to a much larger class of signals and systems.
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I. INTRODUCTION index (Sl) the SNR, which is simple to compute but which
discards some statistical information, or turning to other Sls
One of the most common indices of signal-to-noise sepathat retain the relevant information but might be more diffi-
ration for narrow-band signals in noise is the signal-to-noisecult to computg3]. A similar tradeoff situation arises if one
ratio (SNR) expressed in thgFouriep spectral domain. considers, instead of the SNR, other output Sls which, like
There are several reasons for this, one being the simplicity ithe SNR, might be blind to certain parts of the statistical
definition and computation, another the fact that, for the castructure of the process but still are easy to compute, such as
nonical case of a time-sinusoidal signal with random initialthe deflections described below. Regardless of what type of
phase in Gaussian noise, the SNR immediately gives the oprdex of separation between signal and noise one chooses, it
timal performance figures for several standard detectionwill always reflect(well) only one or a few aspects of the
estimation problem§1]. For example, the maximal achiev- total behavior of the observed process. This is true even if
able probability of detection of the signal can in this case, forone considers Sls that correspond to linflteunds in sta-
any fixed false alarm probability, be written as a function oftistics and information theor§{T), such as theb divergences
SNR (Marcum’s Q function). This intimate connection be- employed below. In other words, no S| can serve all pur-
tween the SNR and fundamental performance bounds can lposes and it is therefore imperative that one, in a given situ-
attributed to the fact that the whole statistical structure of thetion, clarify exactly what performance aspect or intended
process in this case is captured by the power spectRou-  use one is interested in. Examples of objectives inherent in
rier transform of the autocovariance function of the processmany applications include detection/hypothesis testing, clas-
[2]. However, if a process of this type is passed through aification, estimation, and communication, but others of a
nonlinear system, the output is no longer Gaussian and theore phenomenological nature, such as similgetg., vari-
spectrum of the output process will no longer represent theus form of correlationbetween in/outpugsignalg are also
entire statistical structure of the process. Thus, for the outputommon.
there is a choice between using as a signal-noise separation A field where questions of this type have recently elicited
considerable interest is stochastic resond®&® [4]. In SR,
the most commonly used Sls have traditionally been the out-
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local maximum in the output SNR at some optintaput) such explanations can offer insights into mechanism of the
noise strengtipredicated on the system and signal characoccurrence of the resonance in specific signal-SNDS combi-
teristicy. The prevalence dharrow-bandl SNR-type Sls can nations. Generalized resonances of this tfipehe sense of
perhaps best be explained by historical example, since thi@cal maximization of a Slare known to occur also for other
first applications of SR involved enhancement of a sinusoidaP!s and signals/systems and, since they can usually be real-
signal by passage through a stochastic nonlinear dynamic#ed at a critical value of the noise background, they bear a
system(SNDS. In this setting it is natural to quantify per- resemblance to conventional $). _
formance in terms of a spectrum-based(®kusing on the In the next section we define the type of SNDS and sig-
presence of a component in the output with the same fredals we will be working with, and we outline the scope of the
quency as the exciting signalNot surprisingly, since the results to follow. The main material is prese_n;ed in Sec. lll,
inception of SR, investigations have been carried out to dewhere we address the problem of characterizing system per-
termine whether or not the effe¢or some variant of jt ~formance in terms of general Sis. First, in Sec. Ill A, we
could be used to facilitate detectifs] or information trans-  review the concepts of likelihood ratid.R) and sufficient
fer [6]. This led naturally to consideration of other Sls thatStatistic, since these are central to the subsequent develop-
(also for more general distributions of signal and npise ments.(The impatient reader can sk_lp this section and pro-
more closely related to IT limits, such as probability of de-c€ed directly to Sec. Ill B.The LR will play the role of an
tection, false alarm, and error in detection settif§<s,d] information-preserving .data_reductlo.n of an ob_seryaple re-
and mutual information and channel capadi®yd] in com- lated to a SNDS, prowdgd mformauon preserving is inter-
munication settings. It has been shown that the channel cd&reted in a certain statistical sense which we clarify. Of par-
pacity of simple binary channels can be enhanced by addinficular importance is the formula for the LR based on
noise to the input. An intuitive way of explaining this is that, O0servations of the wholgstate trajectory of an SNDS rep-
unlike in the case of a linear channel, adding noise change€sented by a stochastic differential equati®DE), which
the structureof the equivalent channéin a nontrivial way. ~ We recall and discuss. Then, in Sec. lll B, we introducedhe
The communication problem thus gets an additional dimendivergences as a general class of Sis for SNDS that are cal-
sion; that of optimizing not only the channel coding but alsoculated as functionals of LRs and describe a few of their
the channel itself. properties. The most important property @f divergences

In the present work we generalize the formalism intro-that we single out can be interpretédosely as an analog of
duced in[7] to SNDS with the focus on output-based Sis andthe second law of thermodynamics for closed systems: deter-
the problems of detection/hypothesis testing. We introduc&inistic transformations of a noise-contaminated signal
the ¢ divergences of CsisraAli-Silvey [10,11] as a canoni- Should not be able to increase tfseatistical visibility of the
cal class of SIs and give a general formula for the computaSignal in the noise. We also give a concrete formula for
tion of ¢ divergences between the probability measures incomputation of¢ divergences generated by SNDS described
duced by the output of a SNDS over a time inter@T]. Py SDEs in terms of the representation of the SDE. This
Using this formula and basic properties@fdivergences, we formula is very important for the practical applications of the
present a bound for SNR in terms of one member of thigheory, in particular for numerical studies. In Sec. Il C we
family, the y2 divergence, and show why a large class of SRthen proceed to discuss some of the intimate relations be-
phenomena can be associated with the performanselnf Ween¢ divergences and limits in statistical inference that
optimal detectors. The optimal detectors for these case§XiStand, with this material at hand, we explain in Sec. Il D
would give a monotonicallywith input noise strengihde- ~ WhY classical SR can be interpreted as the performance of a
creasing performance, but always at least as good as trfs!Poptimal detector. In Sec. IV we illustrate the theoretical
suboptimal ones. This can be used to qualitatively explain &€velopments in the preceding sections with numerical simu-
number of observations previously made in the literaturéations, using a double-well-type SNDS for a number of dif-
(such as various forms of resonancés other Sis as well, ferent signals and Sis, and discuss the results in Sec. V.
such as those related to Neyman-Pearson deteem) e.g.,
[8]). A main conclusion _of this paper is there_fore the foIIpW- Il. PRELIMINARIES
ing: from a (mathematical systems-theoretic perspective,
(classical SR can in many instances be explained simply as Many physical and biological dynamical systems operat-
the result of a mismatching of the detector to the particulaing in noisy environments can be described by stochastic
shape the output distributions take for a certain input noiselifferential equations of the lt6tratonovich typ¢14—16, a
level, or, equivalently, as deficiencies in the S| usétl. common example being the SNDSs of the double-well po-
should be pointed out, though, that if a measurement noistential type most often encountered in the SR literature. We
floor is present, resonances can occur in the classical SRill also consider here systems of this kind, and for simplic-
setting also for more fundamental Sls, suchfadivergences ity we will restrict ourselves to the case of a scalar-state
[12].) This insight facilitates the use of much more generalvariable and additive noise. It should be noted, however, that
characterizations of the stochastic resonance effect that cayeneralizations within the framework to more general dy-
be introduced and explained without reference to any of theamics(e.g., higher order systemand colored and/or state-
internal properties of the system, e.g., the matching of timelependent noise can be carried out, several of which are
scales(and the concomitant connection tdbana fidereso-  straightforward.
nance[13]) in a periodically rocked potential, even though  We shall consider SNDSs that can be described (@ne-
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dimensional, [tp SDE of the form sponds to the presence of a certain type of signal on the input
(or outpu} of the system, and the other condition corre-
sponds to the absence of it, the decision problem is often
referred to as aetectionproblem. For example, in the sys-
tem (1) with signal of the form(3) or (4), the canonical
detection problem is to determine =0 or A=A, for
where the functiorf represents the negative gradient of asome fixedA,>0. Thus, the simplest form of hypothesis
potential,s; is a stochastic process representing a signal, anksting can be described as any procedure that aims at decid-
W, is a standard Wiener proce@sdependent of) scaled by  ing which of two possible probability measurédistribu-

the noise strength parameter-0. The functionf, the pro-  tiong) is the correct one for some observed data. The two
cesssy, and the initial variablé must satisfy some technical hypotheses about the distribution of data, or the condition the
conditions in order to suit the theory developed below. Forsystem is in, are usually denotétl, and H, respectively,
example, these quantities must fulfill conditions that ensureynd probabmty density functionéDDFS Corresponding to
the existence and Uniqueness of a solution to the @Eng the probab|||ty measures are, according|y, denmq)l_ It
solutions will be of particular interest to UEL7], conditions  would appear that a very basic candidate for an Sl in this
for the measure transformatiofisifinite-dimensional prob-  setting is the performance of a given detector applied to the
ability density transformationsused below to work(one  system’s output for the detection of a certain signal on the
such condition will be mentionédas well as certain other input_ However, we argue that this is not genera"y a good
measurability/integrability conditionfsl5,16. In all our ex-  choice unless the detectordgtimalin some sensér one is

amples, thes¢from an applications point of view not very interested only in one particular aspect of system perfor-
stric) conditions are fulfilled. For later use we note that if mancg.

the associated Fokker-Planck equation has a stationary solu-
tion, or cyclostationary18] in the case of a periodic signal
S, and¢ has the corresponding one-dimensional probability A, Observables, likelihood ratios, and sufficient statistics
distribution, the solutiorX; to Eq. (1) will be a stationary,
respectively cyclostationary, Markov proced4$)].

As a generic example of a potential, we will consider a
soft double well for which in Eq. (1) is given by

dX,= f(X)dt+sdt+odW,, te[0T],

Xo=¢, 1)

The optimal decision stratedgetectoy in all of the basic
decision problem formulations(e.g., Neyman-Pearson,
Bayes, minimaxin statistics is based on one and the same
central quantity, thdikelihood ratio[1]. The LR is the ratio
p1/po and expresses how much more probable a given event

f(x)=—ax+btanhx), a,b>0, @ is underH; relative toH,. Turning to the systentl), we
and as examples of signal processes we will employ a sini@SSUme the existence of an underlying abstract probability
soid space(), equipped with a probability measuRe on which
the initial variable¢, the signal process;, and the Wiener
s=AsiNwet+¢), ©>0, (3)  processW, in Eq. (1) are all defined20]. Unless otherwise

stated, the initial variablé€ is henceforth taken to be zero.
We assume further that E¢Ll) has a strong solution for all
choices off ands; that we consider. Since the trajectoris
take values in the space of continuous functi@{$0,T]),
we obtain also oi€([0,T]) probability measures induced by
X; [21], and these are different for different choicesfgs; ,
and o. The measure induced by, for f=0,5,=0, ando

sI=Aexp<
) ] _ >0 is known as théscaled Wiener measure, denot&j, . It
centered ato e [0,T] with amplitudeA=0 and standard de- 5 \ye|| known that(for fixed o>0) the various probability

viation 6>0. Although these signals are deterministic, there,.5sures of([0,T]) induced byX, for different choices of

IS In principal no d'ﬁ'CL.my in applying the me_thodglogy of f ands; in Eqg. (1) have(under certain integrability conditions
this paper to random signals, e.g., the sinusoids with rando posed onf and's,) PDFs with respect t&®, [22]. We
phase or wide-band noise. An obstacle that arises, howeve(ljrenote byH, the hytpothesis that the PDE in auestiorpi)s
is that certain quantities will then no longer be exactly €X-the one obtgined fo,=0, and byH the hypothesis that the
pressable by simple formulas. PDF isp4, the one obtained wheg# 0, for fixed common
f,o and some given signa, . In the simplest case, where
f=0 ands; is of the form(3) or (4), the process; will be
gaussian[ZS] under bothH, and H;, and the LRL(X)
=p1(X)/po(X) evaluated for the trajector¥; is given by
the well known relatiorf1] (the LR for deterministic signals
h in Gaussian white noige

with constant amplitudeA=0 and phasepe[—m,7), as
well as a Gaussian pulse

—(t—tp)?

Y (4)

IIl. SEPARATION INDICES AND SNDS

One of the most basic objectives with measurements of
physical system is to determine if it is in one of two possible
conditions (or modes of operatign In a statistical setting
(with noise presentthis corresponds to determining whic
of two possible probability measures is active on the space of

all behaviors, which is an inference problem of thgoth-
esis testingype. If one of the two possible conditions corre-

1/ (T 1(T
In L(X)ZE(L s dX,— Efo sfdt). (5)
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An important point to note about E¢p) is thatL (X) can 1(T
be recovered by a simple deterministic transformation once E exn(if [F(X)+s]? | [<ee, (12
the value of the stochastic functional 0
Si(X) (6) L ,
where the expectatiof is with respect td®, thenA()(X) in
is known, whereS, is defined by Eq. (9) is well defined, as is\(9(X) in Eq. (9) if s, is set to

. 0 in Eq.(12) [26].
S(Y)= jo sy, (7)

B. ¢ Divergences: Definition, properties and computation
for processed such that the stochastic integral in E@) is A number of fundamental limits for statistical inference
well defined. This leads us to the concept of sufficient Staﬁséan be expressed in terms of quantities knownpasiver-
tic. A sufficient statistidor the LR is a function which maps i .
data, here the trajectorie$;, to some intermediate space gences or AI|-$|Ivey d|§tance510,1]]. Examples are the
such that the LR can be obtained from it by a subsequerg'sher_ mformatlor(Cra_me-Rgci bounglfor small parameter
deterministic transformatiof24]. Hence, a sufficient statistic 2€V1ations, the bound in Stein’s lemma, the Chernoff bound,
carries all the information needed for optimal decision mak-"ald's inequalities, and the bound on minimal achievable
ing regarding the condition of the systetid{ or H,). There-  Probability of error in Bayesian hypothesis testjrig27,28.
fore, as an observable to be used for decision making, the L Rh€se bounds limit how well one can perform certain tasks
(or a sufficient statistic for jtis as good as the whole trajec- based on measurements on a stochastic system, such as the
tory X,, thereby providing lossless coding of the trajectorydetection of signals present on the input/output or estimation
in this respecf25]. Thus, for inference, the LR deserves to of parameters in the system. However, the bounds are all
be called anost compact representation of (all) the informa- achievablgat least asymptoticallyi.e., there exist strategies
tion in an observableln the general case, with a nonzero for inference that yield a performance that approaches the
f and possibly random signals;, the LR A(X) bound. Thus, for physical systems these bounds effectively

=p1(X)/po(X) takes the forn{15] tell us how much informatior(for various forms of infer-
ence about the system different observables can provide
AD(X) [29], and the¢ divergences offer alternativeompact rep-
)= A(T(X)’ ®)  resentations of it.
The ¢ divergences have properties reminiscent of di-
whereA(k)(X) for k=0,1 is given by rected distances between probability measyRI3Fs and

are defined as convex functionals of the LR in the following
1 T, 1(7. way. Let pg,p; be two PDFs with respect to a reference
3 _ 3 k 2
In A®(X)= ;( fo f§ )(X)dxt_ Efo [f§ )(X)] dt)- measure\ on some spac#g’ (considering Lebesgue measure
9) d\=dx on X=R makes the picture clepand let¢ be a
(real-valuedl continuous convex function of0»). The ¢

For the system(1), FO(X)=f(X,) and FM(X)=f(X,) divergenced 4(po,p1) betweenp, and p, is then given by

+5,(X), wheres,(X) is the conditional expectatiofoptimal [10]

mean square estimatef s; given observations oK, over P,

[0t], computed under the probability measue If s, is d¢(p0,p1)=f d)(—) pod\ (13
deterministic, we have,(X)=s, and the LR becomes par- % \Po

ticularly easy to compute since we can dispense with the

nonlinear filtering operation(in the statistical sengd15],
which is otherwise implicit in the computation ef(X). By
dividing out terms in Eq(8), it is easy to see that a sufficient
statistic forA (X) in this case is given by

(where we assume that; is zero wherep, is; however, in
our examples, is positivea almost everywhepe In par-
ticular, for ¢(x) = —In(x) we obtain the Kullback-Liebler di-
vergence, oinformation divergence ,d30], also known as
Sy(X), (100 the relative entropy; forg(x)=|(1—-a)x—al, where «
€[0,1], we obtain the(weighted Kolmogorov divergencge
whereS, is defined by or error divergenceig"); and for ¢(x)=(x—1)? we obtain
: : the x? divergence ¢ [31].
_ By definition (13) the ¢ divergences contain several at-
So(Y)= fo sdYe— fo f(Yosdt, 1D tract}i/ve features as stat?stical |$1easures of dissimilarity, or
separation betweenpg,p;. In particular, any given diver-
for processe® such that the integrals in Eq11) are well — gencedy(po,p;) is always maximized ifpop; =0 (almost
defined. We note in passing that a sufficient condition for theeverywherg, and converselyl 4(poy,p1) is minimized if py
representatioit8),(9) to be valid is Novikov’s condition: If ~ =p; (almost everywhepe For example, taking
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pod)\

o p
d! ><po,p1)=f (1-a)——a
X Po

=f |(1—a)p;— apo|dX,
X

it is clear that the extreme cases yield the bounds
|1-2al=d{(po,py)=1.
Moreover, any transformation
7A=Y

of the underlying spaceX, which induces a new reference
measurep and corresponding PDFg, and g; on ), can

never increase divergences, since we have the data proce

ing inequality[32]

dy(Po,P1)=0dy(do,q1). (14
Equality occurs if and only if the new LRy;/qg, when
evaluated as)4[ 7(x)1/qol 7(x)] over &, is a sufficient sta-
tistic for the original LRp4(x)/po(X), and this makes the LR
(and its sufficient statistigghe most “informative” function
of an observable for inference. For exampley§fp, are the
PDFs with respect t@, on C([0,T]) induced by the trajec-
tories X; of the system(1) for s;=0 ands;# 0, respectively,
7 is the functional orC([0,T]) defined by the statisti¢10),

PHMCAL REVIEW E 63 011107

fC([O,T]) d)(

—f AD(X)
~ 1o A©)(X)
El ¢

P1

Po

dy(X)

) pOdP(T

AQ(X)dP

A(l)(X)
A(O)(X)

(16)

A(O)(X)),

where A (O(X),A)(X) are given by Eq(9) and the expec-
tation E is with respect tdP. The importance of the repre-
sentation(16) lies in the fact that the divergence sought,
which is somewhat abstractly defined by the first equality,
admits a concrete representation in terms of the other two
gé:[ualities[where the dependence on the SDE is made
explicit]. In particular, the last two equalities provide us with
a means to numerically compute the value of a divergence by
Monte Carlo simulation.

C. Relations to bounds for inference

Perhaps the most fundamental connection betwgeti-
vergences and limits for inference is the one furnished by the
relation between the Kolmogorov divergerd’ and mini-
mal achievable probability of error in hypothesis testing. Let
po and p; be two generic probability densitidwith respect
to a measure. as beforg corresponding to two hypotheses

Lebesgue measure dhof the values of this functional, then
we ftrivially have equality in(14).

For future reference, we note also thatsjfis invertible
we will have equality in Eq(14) and no loss of information.
In particular, systems such &5 are invertible in the follow-
ing sense and thus adivergence preservingeach output
trajectoryX; in Eq. (1) uniquely determines a trajectory de-
fined bth=Xt—f})f(XT)dr, and the map so defined is in-
jective [33]. Since we cariwith probability one identify Z;
with the input trajectory

t
Ft:f s, d7+ oW, (15
0

(wheres; can be zero in the case of no signiafollows that
the input and output trajectories are in one-to-one correspo
dence, and the system is invertible. Thus, for ahyliver-

gence, the divergence between the two probability measur

on C([0,T]) induced by the input fos;=0 ands;#0, re-
spectively,(for which the LR is given by Eqs(8) and (9)
with f=0) will coincide with that between the correspond-
ing two measures o€([0,T]) induced by the resulting out-
put [for which the LR is given by Eq¥8) and (9)].

Further, for systems such &), a concrete representation
for ¢ divergences between probability measures o
C([0,T]) induced byX; has been givef34] in terms of the
LR in Eq. (8). Let pg,p; be the densities with respect &,
induced byX; whens,=0 ands;# 0, respectively. Then, the
¢ divergenced 4(X) betweenp, andp,; can be written

of a signals; in the system1), and assume that parameter
and its complementary value -1« in the definition of
dg")(po,pl) represent twa priori probabilities forH, and
H,, respectively, to occufthe standard Bayesian setting in
statisticg. Then, it is straightforward to show thpt1]

P (po,p1)=3[1—d(pg,py)],

Wherel?’g“)(po,pl) is the minimal achievable probability of
error in hypothesis testing betwedth, andH, (for param-
etersa and 1—- «) [35]. Thus, we see that an observable for

which d{*)(py,p,) is large provides lowP{*(pgy,p;) and
therefore much information for inference purposes.

Optimal detection, such as minimizing the probability of
error in the sense just described, requires full knowledge of
Yhe probability distributions involved, i.e., the LR, and this
can be difficult to obtain in many applications. Therefore, an
Siternative type of Sl known as ttaeflection ratio(DR) is
sometimes used. The DR depends only on the expectations
and variances of an observable at hand and is most com-
monly defined as follows. Lét be somgpossibly complex-
valued observable of the data such tlgat{h) and Vy(h)
both exist, wherd=,(h) is the expectation df underH, and
V(h) is the variance oh underH,. The DRA(h) of his

"hen defined afl,36]

A(h)= Vo(h) ,

(17)
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where Eq(h) is the expectation oh underH,. The DR is

PHYSICAL REVIEW B3 011107

future use we note also that the SNBY) is invariant under

often viewed as a generalization of the concept of SNRtransformation by a linear time-invariant systéwith finite

When used for detection, the decision thtis true is made
if h> v, wherevy is some threshold; otherwis¢, is chosen
[assuminch is real andg;(h)>Eg(h); in generalh is com-
pared with some decision boundarBy writing outA(h) in

terms of the integrals with respect pg,p; and applying the

nonzero Fourier transform neai).

The boundg18) provide us with a straightforward way of
assessing the nonoptimality of a given deteci@r., statistic
h). For example| ¥4 w,) can be interpreted as a linear func-
tional onC([0,T]) (where the trajectorieX; take their val-

Cauchy-Bunyakovsky-Schwarz inequality, one obtains thaieg so we can apply the bounds in E{.8) to the statistic

bounds

OgA(h)ngZ(pOIpl)v (18)
with equality on the left if and only if Ep{[h
—Ep(h)](p1/po—1)}=0 and equality to the right if and
only if C{[h—Ey(h)]=Cy(p1/po—1) with py-probability
one, for two(complexX constantsC;,C, not both zero. Thus,
in particular we have equality to the right in EEL8) if h
equals the LRp1/po.

D. Relations to SNR and detector optimality

h=1¥%w,). The ratioNe[0,1] defined by

N die(Po.Py) —A(1FH o))
T d,2(Po.Pa)

(22)

[where the PDFgg,p; are the ones induced @[ 0,T]) by
X¢] will then be an index of nonoptimality87] of the Fourier
statistic| ¥4 w,) as a detection statistic. This céfor large
T) be expressed in terms of SNR if we divide both the nu-
merator and denominator of the right hand side of &)
by T and use Eq(20) to write A[17%(wg)]/T=3S,+0(1)

Given the properties o divergences, it would be desir- [38]. Thus, it. fo!lows that for signals and systems as ip Sec.
able to compare and relate these to those of the SNR, arlti th€ SNR is in generahot to be equated with optimal
this is indeed possible. It has been shdi8d] that the SNR ~ detection performanceut, rather, when compared to optimal
used in SR can, under some mild technical conditions, bd€téction performance, gives an index of the nonoptimality

expressed as a limias the observation time goes to infin-

[39] for detection ofs; based on the trajectory; using the

ity) of deflections of Fourier transforms computed from theStatistic(21) [40].

trajectoriesX; of the system(1). Let po andp, be the den-
sities with respect t@, induced onC([0,T]) by the trajec-
tories X; whens;=0; hypothesiH,, ands;#0; hypothesis
H,, respectively, as in Sec. lll A. Further, I&, and E;
denote the expectations computed unidgrandH 4, respec-
tively, and assume that the system has a stationary soluti
X; underHg, a cyclostationary solution undét,, and that
Eo(X?)<o,E;(X?)<o. For the case of deterministiperi-
odic) signals as in Eq(3) we can then define the SNR, as

ap

% go(wo) 19

where g, is the power spectral density of the Lorentzian
processX, obtained undeH, anda,=|c,|*2m, wherec, is
the first coefficient in the Fourier expansiap . ,C,e'“o" of
the periodic functiorE(X;) (this definition makes the most
sense for weak signals, i.eA<1). Then, under some inte-

IV. SIMULATIONS

We shall now illustrate the above findings with some nu-
merical simulations involving the systeth), for determinis-

Othc signals; in the form of a sinusoid as in E¢3) and a pulse

as in Eq.(4). In all the simulations the parameters used for
the potential represented Ilfyin Egs. (1),(2) area=53.5p
=216 and the SDK1) is solved using the Euler-Maruyama
scheme. Théintegratedlinput F, to the systen{l) is defined
as in Eq.(15), wheres,=0 underH, and is given by either
Eq. (3) or Eq.(4) underH,. The output, finally, is given by
X; in Eqg. (1). We compute thep divergences for the statis-
tics (7) and (11), and compare with the results computed
from Eq.(16), all evaluated both for théntegrated input F,
and outputX;. Note that, formally X;=F; for f=0 so that,
e.g., S(F) is given by S(X) in (7) if f is set to 0 and
analogously for the statistic in E¢l1) and a divergence as

grability conditions on the covariance and power spectral E- (16).

density functions ofX; underH,, we have[34]

Al17H wo)]

T (20

p:

T—oo

where I%’Z is a square root of the continuous-time peri-

odogram defined as

 2aT

T )
1Y2(w) fo X, 'dt, weR. (22)

Two distinctly different techniques were used to compute
the various¢ divergences depending on whether the diver-
gence in question was one between PDFsRoor between
PDFs onC([0,T]). For PDFs onR, as encountered when
evaluating divergences for the statistics
S(F),Si(X),S,(F),S,(X), the divergences were calculated
using the basic formul&l3), where the PDF$,,p; were
estimated using a simple histogram approach. For instance,
when computing the divergences for the statiSi¢X) in
Eqg. (10) the SDE(1) was solved using botls,=0 ands;

#0 (with the nonzero signal chosen according to the case
under considerationand two large sets of solution trajecto-

As an aside, we note that a similar relation holds for the casées X; were created, representing tHg andH, hypotheses

of a random phase, for weak signals A<1) [34]. For

on C([0,T]), respectively. These two sets of trajectories
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. . 2 .
06 Input 06 Output Kolmogorov—div. I-div. X —div.
B ) 0.215 0.05 0.1
Fi 05 0.5
S 0.04 0.08
S 04 0.4
g 0.21
‘g 0.3 0.3 0.03 0.06
=]
v - ”
025550 500 750 1000 %2 250 500 750 1000 0.205 0.02 0.04
1 1 0.01 0.02
: 0.2 0 0
;? 05 05 500 1000 500 1000 500 1000
] 02 02 02
(les=a 0 FIG. 2. ¢ divergencegKolmogorov, left; information, middle;
2 1 2 . ; L
50500 750 1000 505007501000 X2, right) for the input to the systenfl), based on the statistic
6 6 So(F), which is not sufficient for the input with sinusoidal signal
. (underH,), plotted as functions of the noise intensity. (Curves
% 4 4 are an enlargement of the dashed curves in the left column in Fig.
o 1. These curves show a clear resonance.
2 2
O 50500 750 1000 ° 250 300 750 1000 these will be described elsewhere. When computing deflec-

tion ratios, the expectations and variances in @q) were
computed directly by standard averaging, without first com-
FIG. 1. ¢ divergences(Kolmogorov, top row; information, puting PDFs fon%/z(wo)_
middle row; x?, bottom row for system(1) with the sinusoidal
signal (underH,) plotted as functions of the noise intensity for
the input(left column and output(right column, all in dimension- A. Harmonic signal
less units. The divergences are computed based on the values of the
statistic in Eq.(7) (dash dotted lines the statistic in Eq.(11)
(dashed lings and formula(16) (solid lineg. For the input, it can

. . H,. The parameters fos, are A=1.3, wg=1.2252, ¢=0
be seen that the statis®yF) produces the same divergences as the, 1 t e . ' 20 _ C T
ones obtained frond ,(F), which is to be expected sin&(F) is (cf. [41]). The length of the time interval i=153.8(which

sufficient for the LR for the input process. The statis$igF) on corresponds to 30 periods of t_he sinuspithe time step in
the other handwith values at the bottom of the plots in the left the Euler-Maruyama scheme is 0.01, and a total of 10000
column), which is not sufficient for the input, produces values far trajectories has been used in the averaging. The value of the
below the corresponding optimal ones obtained fr§f(F) and @ Priori probability in the Kolmogorov divergence ig
d4(F) (cf. Fig. 2. For the output we analogously see that the sta-=0.6.
tistic S,(X), which is sufficient for the LR for output, produces the  In Fig. 1 the Kolmogorov, information ang? diver-
same values ad,(X), whereas the statisti&(X) produces far gences are computed for the input and output processes, re-
lower values(falling on the abscissa in the plots in the right col- spectively, using the statistic in E(7), the statistic in Eq.
umn). Moreover, due to the invertibility thel,(F) and d,(X) (11), and formula(16). For example, the upper left panel in
curves coincide. Fig. 1 showsd{“{p,[S(F)1,pi[S(F)]} (dash-dotted ling
diHpol So(F)1,PalSo(F)]} (dashed ling and d\”(F)
were then used to produce histogram estimates of the PDKsolid line), wherep,(S), k=0,1, is the PDKon R) obtained
Po.p1 for Sy(X) underH, andH, from which the diver- for statisticS[as in Eq.(7) or (11)] under hypothesibl, ; for
gences for this statistic were subsequently computed straighthe upper right panel, repladewith X.
forwardly using Eg.(13). The procedure employed for For the input, we see that the divergences for the statistic
Si(F),S(X),S,(F) was analogous, using the observationsS;(F), which is a sufficient statistic for the input LR and for
above about the relations betweXpandF,. On the other which the divergences are between PDFsiofwhereS;(F)
hand, for PDFs orC([0,T]), as encountered when evaluat- takes its valugs agree with the divergencei;(F) obtained
ing the divergencesl 4(F),d,(X) in Eq. (16), an entirely ~ from formula(16), which gives divergences between PDFs
different approach was used based on directly estimating then C([0,T]). This is in accordance with what we know about
integral on the right of the second equality in E@6). It  equality in the data processing inequalify), since here we
utilizes the fact that if a proces§ which is a Wiener process can interpretpg,p; in Eq. (14) as the PDFs orC([0,T])
under the basic measukeis inserted into formul&16) in all induced by the inpuF, underH, andH, respectively, and
places whereX; appears, then standard averaging will pro-#» as the functional orC([0,T]) defined byS;(F), which
duce the expectatiotintegra) on the right in Eq.(16) [34]. trivially yields equality in Eq(14), sinceS;(F) is a sufficient
However, in order to achieve numerical convergence andtatistic forF,. For the statisticS,(F), which is not suffi-
efficiency, a number of numerical devices were needed, butient for the input, we obtain curves displaying a barely vis-

Our first example will illustrate the results of Secs. 11l B—
Il D for the case of sinusoidal signal} as in Eq.(3) under

011107-7
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FIG. 4. NonoptimalityNt for the output as a function of noise
FIG. 3. Deflection ratia\[17%(wo)] for the output to the system intensity o (dimensionless unijs The peak in the curve agrees
(1) with the sinusoidal signalunderH,) plotted as a function of well with the dip in the deflection curve in Fig. 3.
noise intensityo? (dimensionless unijs The same definitions and
parameters as in Fig. 1 have been used. A clear resonance can be

observed. Here we see typical SR behavior with a clear resonance

near o2=300. However, in view of Eq(20), this type of

iol t behavi ith val far below th dbehavior is to be expected. It is also worth noting that the
Ibl€ resonant behavior with values far below the COIrespondg ;e jn particular after normalization withTl/are much

ing ones for _the divergences,(F). The t_)ehavior of the lower than those for the outpyt® divergence in Fig. 1. An-
Se(F) curves is more clearly seen when displayed separatelgther interesting observation about the curve can also be

as _in Fig. 2 They illustrate that a nonoptimal d_etection Stamade which is not related to the resonance peak but to the
tistic can give rise to performance curves that display typica ip immediately preceding it. Given the discussion in the

SR behawot:, and lihgf tr:jgﬁasyn:p]:cotlc i)r(]ahawor for sgjal receding section about nonoptimality of the detection statis-
noise can be markedly difierent from the correspondin icl%’z(wo), it is tempting to believe that the dip corresponds

curves obtained for an Op“”.‘a' statistic. . to maximal nonoptimality, in the sense of local maximization
Finally we note that all divergencek,(F) for the input Lo : .
. . ; ! ! of the nonoptimality indexN; defined in Eq.(22), for the
decay monotonically with the input noise strengthwhich statisticl ¥%(w,)
is consistent with intuition. For the output we make analo- ST A0 . .
b In Fig. 4 a plot ofN; for the output is shown and indeed

gous observations. Here the statisfg(X) is sufficient for - X o
the LR and produces the same divergences as the diveg peak appears at around=80, which matches the dip in

gencesd ,(X) obtained from formula16), whereas the sta- ig. 3 very well. In fact, the peak in tHg; curve represents
¢ ! a global maximum, which means that the Fourier statistic

tistic S;(X) produces far lower values. This is in accordance : ; . -

with the theory since if we interprgty,p; in Eq. (14) as Eﬁ.l) IS ImaXIr?aIIproor as &tfglrestf;]old detlt(ac_tlo?hsta(;us]:[llc ?t

output-induced PDFs of€([0,T]) and » as the functional IS value ofg. Lonsequently, Ih€ peak n the detliection
curve should therefore more aptly be thought of as represent-

defining the statisticS,(X), we have equality in Eq(14). . .
Moreover, the divergences,(X) computed using formula ing a recovery behavior, where some of the performance lost
! ¢ in the region of values where the dip occurred is regained

(16) coincide with the corresponding divergenakgF) for [42]
the input, since the system is invertible. The stati§icX) '
on the other hand, which is not sufficient for the output LR,
produces curves that argar) below those obtained from
statistic S,(X) and the divergences,(X) from formula To illustrate that thep divergences are applicable also to
(16). nonperiodic forcing, we have computed the divergences for
The monotonic decay of the divergence curves computethe same setup as in the example in Sec. IV A but with a
from formula(16) differs markedly from the behavior of the Gaussian pulse signal as in Eg4) underH,. The pulse is
deflection of the Fourier statistiA[I%’z(wO)] based on the centered at,=T/2, and has a standard deviation & T/4

output, as defined in Sec. Ill D, which is shown in Fig. 3. and an amplitudeA=5. The length of the time interval is

B. Pulse signal

011107-8
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Input Output sibly random, wide-bandsignal. If we make a loose analogy
- 035 0.35 with (thermodynamicalentropy in closed systems and inter-
‘-§ pret the similarity expressed hy divergences as a figure of
z 03 “mixed-up-ness” or overlap between two PDFs, the data
§D processing inequalityl4) shows thaip divergences also be-
e 0.25 have consistently with intuition: deterministic transforma-
G tions (which do not involve any auxiliary random variables
Mo 02 500 750 10000'2 500 750 1000 and thus are closg¢aannot increase the separati@®., de-
02 02 crease the mixed-up-ngsbetween two PDFs. In fact, the

data processing propertf4) can be taken as a natur@xi-
omatig requirement of an Sl between probability measures
- - which guarantees that the output-input separation gain will
0.05 ] ' always be between 0 and[#3]. Further, as mentioned in
Sec. Il B, systems that represent invertible transformations
1000 preserve divergences, and therefore the separation between
noise and signal igin this sensgthe same whether it is
measured on the input or output of the system. This also can
be taken as a natural requirement of a separation index: for
an invertible system, all the information about the signal is
still present after passage through the system, it is just rep-
resented differently than at the input, and a good Sl should
o0 S0 1000 =00 01000 (tj)ztziinvariant under differentequivalen} representations of
2 2 .
°c °c The behavior ofp divergences is thus markedly different
FIG. 5. ¢ divergences(Kolmogorov, top row; information, from other Sls that do not have the data processing property
middle row; 2, bottom row for the system(1) with pulse signal  (14) (with equality for invertible transformatiopsin particu-
(underH,) plotted as functions of the noise intensif for the  lar, for a time-sinusoidal input such as E8) embedded in a
input (left column and output(right column), all in dimensionless  weakly stationary backgroungoise process, the SNRRL9)
units. The divergences are computed based on the values of theas only partially this property, since it is invariant under
statistic(7) (dash dotted lingsthe statistio11) (dashed lines and  (locally in the spectral domain, neas,) invertible linear
the formula(16) (solid lines. For the input, the statisti&(F), filtering operations but not under the relatively simple non-
which is sufficient for the LR, pI’OduceS the same divergences as thm’]ear |nvert|b|e transformatlons that Correspond to a passage
ones obtained frond 4(F). The statisticS,(F) on the other hand through a system such &%). This lack of invariance of the
(with values at the bottom of the plgtswvhich is not sufficient for SNR is a consequence of the fact that the stati&ig im-
the input, produces values far below the corresponding optimal onegjicit jn the definition of the SNR is blind to certain parts of
obtained fromS,(F) andd,(F). Analogously, for the output the o giavistical information about the process. Another way of

statistic Sy(X), which is suifficient for the LR, produces the same quantifying the blindness to statistical information inherent

values adg ,(X), whereas the statistf§ (X) produces lower values. . . S

. : . in the statistic(21) emerges naturally when considering its
Here, the difference between the optimal and suboptimal values is” . detecti Wh d for detecti th t
not so great, however. Also, thi,(F) curves coincide with the use in aetection. en used for detection on the outjm.

d4(X) curves due to the invertibility. detect a time-sinusoidal signal present on the inpfitthe
system(1) the statistic(21) always renders the detector sub-

T=10, the time step in the Euler-Maruyama scheme isoptimal (no matter how the statistic is used,; it is not suffi-
0.005, and a total of 20 000 trajectories has been used in trgent for the LR. More generally, any Sl used to describe
averaging. The value of tha priori probability in the Kol-  separation between signal present and absent on the output
mogorov divergence ig=0.6. which is not a functional of the LR will necessarily be blind

In Fig. 5 the divergences based on the input and outpuio certain parts of the statistical information and will suffer
are shown. On the whole, the behavior is similar to thafrom similar inadequaciesand may or may not produce
displayed in the example with sinusoidal signal; sufficientresonances as, e.g., in Fig. 3till, SNR and similar Slis can
statistics always produce the same values as forrtiy  be very relevant in those instances where amie specific
and the latter yields the same values for the input as for th@spectof system behavior is important, such as in narrow-
output. For the output, the nonsufficient statistic does noband processing where the signal power at a single frequency
produce much lower values than the optimal ones, though.is the main concern.

o
=
[

I-div.
o

xz—div.

V. CONCLUDING REMARKS
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